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ABSTRACT 

b , The effects of loops upon the conversion of a sequential 

machine into a periodic machine a r e  examined, and theorems anh 

corollaries derived which predict the allowable periods for  non- trivial . 

periodic machine equivalents of sequential machines. A periodization 

procedure is developed and presented, The theorems and corollaries 

a r e  initially derived f o r  minimal, strongly connected sequential 

machines, and then extended to include non-minimal, non- strongly 

connected sequential machines, a s  well. 
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This report represents work begun i n  the summer of 1967. About the 

time the work was complete, G i l l  and Flexer published results similar to 

those presented herein. 

thought it worthwhile to make our work available in this form. 

The approach and proofs differ sufficiently that we 
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I. INTRODUCTION TO PERIODIC MACHINES 

A. Preliminary Definitions 

.( In this paper, we are concerned with a c lass  of sequential 

machines in which transitions occur a t  particular intervals, e. g .  

synchronous (or clocked) sequential machines. 

be used to designate such machines. 

-. 
The symbol M will  

The input states to the machine 

M a r e  denoted by the symbols Xi, the internal states by S. and the 

output symbols by Zi. The machine will be dcscribed by i ts  state 

1 

diagram, and wil l  be a minimal machine. 

bination of input and internal states wil l  be total state. 

The name given the com- 

W e  shall further res t r ic t  thc discussion, in general, to 

strongly connected machines; that is, machines f o r  which there exists 

some input sequence X 

to progress f rom any given S .  to S , where i may equal j.  

of such a machine is shown in Figure l a .  

machine which is not strangly connected; the input sequence X 

X 

S5, from which there is no finite sequence causing a return to S2. 

X2, . . . Xn which will cause the machine 

An example 
1 j 

Figure l b  portrays a 

3’ x5’ 

(beginning i n  state S ) will cause the machine to sequcnce to state 6 2 

In the la ter  scctions of this paper, certain of these restrictions 

a r e  examined, and the findings exteiidcd to cover tliose cases. 

1 
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a)  Strongly Connected Machine 

X8 

b) Non-Strongly Connected Pdachine 

Figure 1: Classcs of Sequential Mrtchincs 

* .  . 

/' 
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B. Periodic Machines 

A periodic machinc is a machine which consists of a set  of in- 

put symbols, internal states, and output symbols, as defined pre- 

viously, In addition, the periodic machine has a set of next-state 

functions which vary with time. Functionally, a periodic machine 

can be considered as shown in Figure 2 ,  with input and output com- 

binational logic blocks and a memory. 

blocks vary in composition with time in a periodic manner; they may 

be considered a s  being replaced with other blocks a t  each clock. 

The input and output logic 

Sequential machines whose next state functions do not vary with time 

may be considered a s  a special class of periodic machines whose 

period i s  1 .  

The primary advantage of periodic machines lies in the poten- 

tial of lesser  memory capacity required. A s  an example, the con- 

ventional fixed machine of Figure. 3 requires 8 states, whereas the 

equivalent periodic machine shown in Figure 4 requires only 2 states 

a t  any given time period. The saving in logical elements i s  demon- 

strated by the iinplenientations of the fixed an51 periodic machines 

shown in Figures 5 and 6. The periodic representation assumes the 

existence of a multi-phase clock system; this is  discussed la ter  in 

this section. 

In general, however, the lessening in memory capacity 

achieved in the transforn~ation from fixed to periodic machine is 

accompanied by a like amount of memory rcquircd to rcmembcr i n  

which time period the periodic niacliiiic: i s  operating. 

added complexity of the adclitioilal coinbinational circuitry rcqnired 

In addition, the 
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Ezi} cx i3 

Figure 2: Generalized Periodic Machine 
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Time 
Period 

3 
t - 

Figure 3: Eight State Sequential Machine 

Figure 4: Periodic Equivalent of.Mac1iiiie in Figure 3 
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Figure 5: Implementation of Conventional Machine 

6 

Figure 6: h p l c m c n t a t i o n  of Periodic  Machine 
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may be a disadvantage. 

There a r e  equipments in  which some centralized timing source 

already exists, such a s  a multi-phase clock system [5] 0 r . a  "p-time 

counter". 

period of the periodic machine but does provide a "free" memory of 

The availability of such a source restr ic ts  the choice of 

I\ the clock period in which the periodic machine i s  operating, and thus 

obviates the necessity for such a memory to be included in the 

periodieation. 

to utilize variable-threshold threshold logic and an analog signal a s  

the timing memory. F o r  such cases ,  the advantages mentioned above 

for periodic machines may be obtained without the accompanying cost 

of clock memory and logic. 

Additionally, Meisel [3] has shown that i t  i s  possible 

It i s  to those cases  that the research 

preceding this Thesis was directed. 

The primary problem to be solved is the derivation of a pro- 

cedure f o r  the transformation of fixed machines to equivalent periodic 

machines, i f  such a transformation will result in a saving of logical 

elements: 

One method whereby the transformation is particularly easy 

.is where appropriate partitioning of the states can be accomplished 

[11. 
joint, and whose union is the entire collection of states of M. 

A partition i s  a collection of substates which a re  pairwise dis- 

In this 

case,  the transition from one collection of substates S to another { i \  

{S j \  i s  allowed, but to no other; the S must have a transition to i j l  

. (Sk) ctc. When all  states can be partitioned into such classes ,  and 

to the initial parti- { 'nl there is a transition f rom the final partition 

tioii then closure is - said to have occurred and the partitioning 
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Unfortunately, i t  is not always apparent is complete and meaningful. 

which partitioning of a given fixed machine will prove successful; 

this paper explores an alternate means of determining the feasibility 

of conversion of a given fixed machine into a periodic machine, by 

examination of the "loops" of the fixed machine. 



II. ANALYSIS AND SYNTHESIS PROCEDURES 

.A. Nature of the Problem 

4 Given a minimal, strongly connected, sequential machine M, i t  

is desired to determine under what conditions, i f  any, a corresponding 

non-trivia€ periodic machine can be devised. 
1 

At the same time, it would be desirable to be able to specify 

the period of such a machine, to suit the operational environment; 

hence, there is a requirement for an alogrithmetic method f o r  

achieving the transformation, i f  one exists. 

Finally, ’the creation of a method which minimizes the number 

of states during any given period of the periodic machine should be 

investigated. 

€3. Definitions 

P r i o r  to further discussion of the above topics, it is necessary 

to formul’ate the following definitions. 

Definition: If a conventional sequential machine is represented 

.as an equivalent periodic machine, i t  will be said to have been p r i o d -  

icized. 

Definition: Let M be a sequential machine a s  previously 

defined. 

which, whcn M i s  initially in state S1  induces the sequence of states 

If there exists an input sequence of length n; X 1 ,  x2. . .x m 

S2,  S 3 ,  . . . , Sll, SI, where iionc of thc S. (i = 2 ,  3 ,  . . . , n) arc S1; 

then M contains a 1ooLof pei-jod __ n. 

1 

-- 
9 
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In particular, i f  there exists an input which does not change 

the intcrnal state of the machine, M has a loop of period 1. 

For example, Figure 7 indicates a machine with loops of 

period 1, 3, and 4. 
\i . 

Definition: It i s  clear that any machine M, of m states, can 

be periodicized into a machine of period T by duplicating the m states P 

T times, and modifying the transitions accordingly; such a periodiza- 

tion i s  termcd trivial. 

Figure 8 presents a two-state machine which i s  trivially 

periodicized. From this dcfinition, it may also be seen that con- 

ventional sequential machines can be said to be trivially periodic, 

with period 1. 

Definition: In a periodic machine, the group of states which 

may occur a t  a particular time is called the state set of that time, 

C. Loop Dominance in Sequential Machines 

Jn this section, the discussion is centered about strictly 

pcriodic machines; the extension of the theorems derived to machines 

containing a trsnsicnt set of states a s  we l l  a s  a strictly pcriodic set  

'is cliscusscd in a later section of this paper. We also do not in 

general discuss nor show 011 state diagrams the outputs, to simplify 

the diagrams. 

Leiiiiiia 1: In a strongly connectcd pcriodic niachinc bl, if a 

state appears in cvcry  state set ,  then the periodic rcprescntation is 

--- 

t r i v  i til e 
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Figure 7: Sequential Machine with Multiple Loops 
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i 3  

and a t  least  one successor state 

In addition, the 

in every state set. 

has a t  least one predecessor state S 

Sj4, they also must appear.in every state set. 

predecessor state of S 

in  every state set. By induction, every state must appear in evkry 

state set ,  since M is strongly connected, and the representation i s  

Since state S. of state se t  3 which we denote by S 
1 

h2 

and the successor state of S must appear 
h2 J4 - 

* 

hence trivial. 

Theorem 1: Let M be a minimal, strongly connected sequen- 

t ial  machine with a loop of period n. 

machine M 

period T must bc a multiple of one of thc prime factors of n. 

In any non-trivial periodic 

which i s  the equivalent in the usual sense to M, the . 
P 

Proof: (By contradiction) Assume that a non-trivial periodic 

exists, with a period T which is not a multiple of one of machine M 
P 

the prime factors of n,  and yet i s  equivalent to M. Then, since M 

and M 

have an equivalent state in M 

has a loop of period n, there exists a sequence of inputs yielding a 

a r e  equivalent, any state S. of M in the loop of length n must P 1 

Let us denote that state S s  . Since M P' 1 

e 

sequence of distinct states S i s  si+l# * 

an equivalent state in M 

J Si+(n-l)Y s.. Si+1 also has 

After progressing along the succes- S+ py itl ' 

sor  states of S. exactly n- 1 transitions, the state Si+@- 1l i s  reached. 

In order  for M 

for each of the n-1 transitions mcntioned above, ending in a state 

1 

to be equivalent to M y  i t  must have equivalent states 
P 

S $: Since the next transition of M equivalent to Si-C(n - i t (n-  1)' 

to Si, completing the loop of i t (n-  1) results in a transition from S 

period 11, M 

cannot be in the same state set  as the f i r s t  SF, by the hypothesis that 

mnst have a transition from S::: to an SF, but this S z  P i t (n-  1) 

1 
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M i s  not of a period divisible by one of the prime factors of n. 

thus a r e  forced to have two states S$ in M 

Denote thcsc by S$ 

We 

in different state sets.  
1 P' 

for the beginning S" and S:2 for  the next S 4  etc. 11 i i 

We again traverse the loop of period n in M, beginning with M 

state S:2. 

S" 

in 

At the end of n transitions, another E?? must be chosen, 

i3 '  1 il  i2 '  

P w 

1 

n since if  the latest S? were in the same state set  a s  S" or S:: 

T and n would be related by a common prime factor, which would be 

a contradiction. 

until an S? is assigned to every state set. 

the machine is trivial, by Lemma 1. 

proving the Theorcm. 

Traversal  of the loop continues in the above manner, 

Since there a r e  T S? states, 

A contradiction is thus reached, 

1 1 

Theorcm 1 provides information regarding the periods which 

may be used for non- trivial periodizations, but provides no informa- 

tion regarding the relative meri ts  of two or  more periodizations which 

satisfy Theorem 1. An added constraint, that T divide n,  provides 

this added information. 

accrues when T i s  the greatest divisor of n [ 2 ] .  

The maximum saving in memory required 

Exam* Consider the fixed machine M shown in Figure 9a. 

Examination of the machine reveals that the loop is  of period 6. 

Theorcm 1, any non-trivial periodic machine M 

T such that T and n have a common prime factor. 

factors 3 and 2,  T may thus be any mult'iplc of those numbers. 

choose T = 3,  M i s  a s  shown in Figure 9b. 

2 bits of mcmory at  any givcn time, as opposed to 6 in the fixed 

By 

must have a period 

Since 6 has prime 

If we 

I P 

We thus require only 
P 

machinc 
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a )  

Time Period 

L 
I t - -  

L_ - 2 t 
c 

Fixed Machine 

2 X 

b) Periodic Machine 
Figure 9: Demonstration of Theorem 1 



16 . 

If the additional restriction that T divide n is not followed, a 

machine results which, although not trivial, is inferior to machines 

satisfying the rule, inasmuch a s  no fewer storage states in any state 

set  a r e  required, and the number of transitions i s  larger.  

presence in the periodic machine of more than one state equivalent 

The 

to a state of the fixed machine also complicates the output logic. 

Example: Considcr the machine with loop of period 8 shown 

in Figure 10. The periodicized machine with period T = 4 is shown 

in Figure l l a ,  and the machine with period T = 6 i s  shown in Figure 

l l b .  

is not the trivial representation. 

The latter machine is clearly inferior to the T = 4 machine, but 

W e  next examine a machine M with loops n. (i = 1 ,  2,.  . . , r) 
1 

a s  shown in Figure 12, and i t s  non-trivial periodic representation, 

P' 
M 

Corollary 1: M i s  of period T,  where T is a multiple of one 
P 

of the common prime factors of 

Proof: Machine M can be re-drawn a s  shown in Figure 13, 

and consists of r machines with coinmon states. Any periodic repre- 

sentation must satisfy individually the loops; hence, by Theorem 1, 

for any loop n. (i = 1, 2,. . . , r)  thc equivalent non-trivial periodic 

machine M 
1 , 

must have period T,  where T is divided by one of the 
P 

prime factors of the n. (i 

by all the prime factors of the 

1, 2, . . . , r). Hence, T must be divided 
1 

In addition, T must be divided by the summation of any set  of 

'kt2' 
the { ni 1 ,  since a loop can consist of the sequence . . . Sk-tl, 

SkS1, Skt2, . . . Thus, the total restriction on T i s  that i t  not only hc 
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Figure 10: Eight-State Machiile 
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a) Implenientation with T =  4 

b) Iinplementation with T =6 

Figure 11: Periodization Exam1)J.c:~ 



.. .-. 

Figure 12: Multi-Loop Machine 

Figure  13: Multi-Machine Equivalent to Multi- Loop Machine 
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, but i t ,must  also be divided 

In order  for this to be possible, the { ni 1 must 
{ ni t divided by the prime factors of the 

by their  summation. 

have a common factor,.  which implies a common prime divisor. 

Again, since, the n must be related by a common prime { i t  
factor, the corollary helow follows immediately: 

Corollary 2: If two o r  more loops a r e  relatively prime, no I 

non-trivial periodic representation exists. 

Example: Let us choose a machine M a s  shown in Figure 14. 

M has n1 = 3 and n2 = 2. 

corollary predicts that no non- trivial periodic implementation exists. 

Since these a r e  relatively prime, the 

Figure 15 depicts the various phases of periodization with T = 3 .  

In Figure 15a, the n l  loop has  been periodicized. Observe, 

however, that there must be a SZto  S1 transition. 

a state S I  has been added, but i t  must be added in  state set 3 ,  and 

corresponding states added to complete the other possible transitions 

In Figure 15b, 

to and from S2. 

tion, this time with S1 in state set  2. 

accompanying states a s  shown in Figure 15c, which can be recognized 

as  the trivial periodic representation, a s  predicted by the corollary. 

Again, however, we must include a S Z t o  S transi- 1 

This inevitably leads to the 

The follo.rving corollary also is a direct  consequcnce of the 

preceding thco rem and corollaries. 

Corollary 3 :  The only periodic representation of a machine 

with one o r  more loops of period 1 i s  the trivial represcntation. 

Exainele: - To demonstrate why this  i s  necessarily a conse- 

queace, consider thc machine in Fjgurc 16. 

of pcriod 1 and 4. 

The loops n l  and n a r e  ' 2 

Choosing T = 4, Figure 17a depicts the periodic 



F i g u r e  14: Machine with Loops of Pe r iod  2 and 3 

Ti me 
Period 

>i b) 

F i g u r e  15: Demonstration of Coro l l a ry  2 
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Figure 16: Machine with Loops of P e r i o d  1 and 4 

. :  b) 

F i g u r e  17: Demonstration of Corol lary 3 
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representation with loop n periodicized. 

period 1 did not exist, the periodization would be complete. 

existence of the loop of period 1 requires that a transition.Slto S1 

exist between any state set  but this in turn, implies that S 

S 

Note that, i f  the loop of 2 

The 

S g  and 2’ - 
must also be in every state set, which is the trivial periodic 4 

1 representation. The process is illustrated i n  Figure l7b. 

Utilizing the preceding theorem and i t s  corollaries,  we can 

conclude under what conditions the periodization of a given machine 

is apt to be feasible, e. g. , result in a saving of memory capacity. 

The conditions a r e  dominated by the loops of the fixed machine, and 

hence the procedure developed in the next section will utilize this 

doininanc e. 

D. Synthesis of Periodic Machines 

Wi th  the fundamental principles a s  contained in Theorem 1 and 

i ts  corollaries,  a systematic procedure for periodizing a given fixed 

machine can be developed. Such a procedure involves the tabulation 

of the loop lengths and calculation of the common prime factor. 

the period of the periodic machine has  been fixed by other considera- 

‘tions (e .  g. available clock mechanism, etc. ), then the procedure will 

quickly specify the allowable periods. 

previously specified, then the period may be selected; in general, 

the grcatest common divisor (gcd) should be chosen, to minimize the I 

memory capacity required at  any given time. 

scribed above is tabulated in Table I, which forms a convenient aid 

in periodizing machines of up to T = 8 and containing fcwkr than b 

. 1  

If 

If the period has  not been 

The procedure de- 
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states per state set. 

Example: Suppose we'are given the problem of designing a . 
pattern detector which behaves as follows: 

Sequenc e 

x l x l x l x I  

Output, z 1z2z3 
000 

110 xlxlxlxz 

100 

01 0 

001 

lX l X Z X  1 

1x2x lX 1 

xzxlxlxl. 

The Z outputs a r e  pulses which occur during the las t  clock 

period of the sequence; X 

the other occurs,  the X1* X2 combination is prohibited. 

and X 1 2 a r e  pulscs such that either one or 

The State Diagram for such a machine is shown in  Figure 18. 

Analysis by standard techniques [4] reveals that no states a r e  

redundant. Four R-S Flip-flops plus supporting logic as  shown in 

Figure 20, a r e  required for  implementation. 

F o r  the periodization of the machine, a l l  loops a r e  of period 4, 

so the period T of the equivalent periodic maehine is chosen a s  4. 

The periodic machine is shown in Figure 19; i ts  implementation 

requires but two flip-flops, and is shown in Figure 21. 

assumed for the periodic machine that a four phasc clock j s  available 

in  the system; if one iniist be generated, much of the savings in  

elements is lost: in the generation of the multi-phase clock. 

Again, it is 

E. E-rtcnsion to Non-Strongly Connected -- Machines -- -_ _I-_- ______ 

In order to estcnd the proceclurcs clcscribcxd jn an ear l ie r  
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NOTE : OUTPUT= 2,s Z, 
IS 000 UNLESS 
OTHERWISE 
NOTED. 

Figure  18: P a t t e r n  Detector State  D iaz ram 

V 

X, ,o O( 

X 
2,110 

Figure  €9: Pe r iod ic  Machinc fo r  Pattern Detector 
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Figure 2 0: Conventional Machine Implementation 
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Figure 2 1: Periodic Machine Implementation 
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section of this thesis for application to non-strongly connected 

machines, changes must be made to compensate for the difference 

in structure of the machine; 

v The typical non-strongly connected machine a s  shown in 

Figure 22 functions a s  though it were several  machines, with linkages 

between machines, some of which a r e  unilateral. When a machine of 

this type is to be periodicized, an attempt to apply the procedure 

developed ear l ier  should be made. 

dure, the conclusion that the machine is only trivially periodicizeable 

is reached, then the machine must be re-examined. 

-I 

If, upon application of the proce- 

If  i t  consists of 

several  machines, weakly connected, somc of which a r e  periodicize- 

able, thcn the periodization can be accomplished using the common 

prime factor of some of the machines. The periodization wi l l  be 

trivial for the other machines. 

Example: When the machine of Figure 22 is to be periodicized, 

tabulation of the loops reveals two relatively prime factors, 3 and 2. 

Since the bulk of the machine consists of loops of period 3 o r  multiples 

thereof, periodization is attempted with T = 3 ,  and is shown in Figure 

23. 

can be seen to occur in every state set, but the periodization is non- 

trivial in the larger  sense, inasinuch a s  the other states do not occur 

in  every state set. 

The portion representing states S4 and S of the fixed machine 5 

Hence, we see that the concepts evolved in the body of this 

Thesis still  apply, with modification, to non- trivial connected 

machines. 



. .  

'I 

Figure  2 2 :  Noa-Strongly Coilnected Machine 

tl 

t2  

3 t 

Figure 23 :  Periodization of Non-Strongly Comiccted Machine 

30 
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F. Extension to Machines Having a Transient Set of States 

Inasmuch a s  machines having a transient se t  of statcs can b e  

considered a class of non-strongly connected machines, it is expected 

that the same modified procedures used to extend the periodization 

of strongly connected machines to the non- strongly connected case 

could be utilized. 

strongly-connected portion, and then include states equivalent to the 

transient states. 

transitions a r e  compatible with the rest  of the periodic machine. 

This is indeed the case; we periodiciac the 
i 

Such states a r e  added in state sets  such that the 

If the transient states cannot be assigned to any particular state set  

due to other system constraints, then the periodization will  result 

in a trivial periodic machine, since the transient state must then 

appear in each state set. 

Example: The machine in Figure 24 has a group of transient 

states, S1, S2 and S 3 .  

icized with T = 3 ,  as  shown in Figure 25. 

The remainder of the machine can be period- 

When the transient states 

a r e  added, S I  and S2 a r e  added in appropriate state sets. S2 must 

be in a state set succeeding the state set to which S I  is assigned, but 

the state set  succeeding that of S 

S4. 

must contain a state equivalent to 

This necessitates the addition of another { Sq - Sq 1 to acccom- 

2 

modate S2. 

Hence, not a l l  machines with transient states can be period- 

icized in a meaningful manner, since the required transitions from 

the transient states to the remainder of the machine may force 

additional sets  of states to be added such that a trivial o r  near-trivial  

machine results. A good "rule of thumb" is to count mod T ,  the 
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I X 

Figure 24: Machine with Transient States 

*- 

Figure 25:  Periodization of Machine with Transient States 



number of transitions f rom the beginning transient state to some 

arbi t rary state of the strongly connected portion of the machine. 
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If 

the count 'differs along the various transien€ paths, additional groups 

of states will be necessary when the maehine is periodiciaed. 

G. Extension to Non- Minimal Machines 

When the extension of the synthesis techniques described in 

the previous sections to non-minima1 machines is investigated, the 

nature of the minimization process must be considered. 

for two states S .  and S .  of a machine to be equivalent, equivalent 

sequences of states and corresponding outputs must result from any 

permitted sequence of inputs applied to the machine when starting in 

either Si o r  S.. Viewed in the terminology developed in this Thesis, 

this equivalence corresponds to the requirement that the loop lengths 

of loops containing equivalent states be identical, and have common 

s ta r t  and finish points. 

h order 

1 J 

J 

Example: The machine of Figure 26 contains two states, SI 

and S3, which a r e  equiva1.ent. The sequence of states S 2' SI,  S 4 h a s  

an equivalent sequence including S 3 ,  i. e. S2, S g ,  S4. 

'four state machine has only one path between S2 and Sq. 

The rninimizcd 

Since equivalence of states thus can be said to imply equiv- 

alence of loop lcngths, the theorcim and corollaries developcd previ- 

ously can be extended to noi?-minimal machines. 

in a noli-minimal machine must st i l l  exist i n  the minimizcd version, 

and thns the restrictions imposed upon the pcriodization process b y  

the cxisteiicc of that loop is independent of the condition of mjnimxlity. 

A loop of length n 
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Figure 2 6 :  Non-Minimal Machine 
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Thus, when a non-minimal machine is  considered for period- 

The number of states ization, the same procedures may be utilized. 

in the periodic machine which results may be non-minimal, however. 



111. CONCLUSIONS 

The foundations upon which practical design of periodic 

machines depends have been investigated, and theorems derived. 

which quickly and accurately predict the outcome from periodization 

of a fixed machine. 

Machines with one o r  more  loops of period 1 were found to be 

poor candidates for periodization, inasmuch a s  the only periodization 

is the trivial one. Machines where the periods of the loops a r e  

relatively prime a r e  likewise poor candidates, 

In summary, the prerequisites for useful periodization a re :  

1) Availability of timing source 

2) Loops of machine compatible with available timing 

3) No loops of period 1 

4) No multiple loo'ps having .relatively prime factors 

Under these circumstances,  a substantial saving of logical elements 

can be achieved. 

It appears that further research is warranted into minimiza- 

tion techniques suitable for the periodization process,  

i f  the state diagram shown in Figure 27 had been chosen for the 

For example, 

periodization of the pattern detector discussed previousl.y, a more 

complicated implementation would have resulted. This is  left a s  a 

future research topic. 

36 
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Figure 27: Alternate Pattern Detector State Diagram 

I 
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